

食品添加物 残留農薬 加工生成物質の 前処理 及び 分析システム

エムエス機器 株式会社

M&S Instruments Inc.

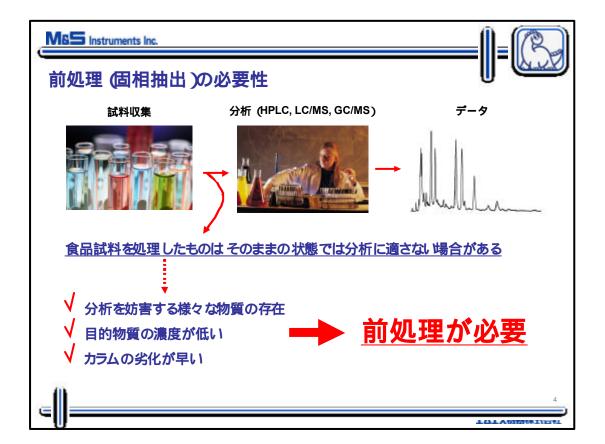
内容

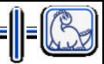
前処理 (固相抽出)の必要性と自動化の意味

GILSON社

全自動固相抽出システム を使用したアプリケーション

食品添加物 (人工甘味料) 残留農薬 (チアベンダゾール) 加工生成物質 (アクリルアミド)





前処理 (固相抽出)の必要性



固相抽出 自動化の意味

⋐

M&S Instruments Inc.

固相抽出 自動化の意味

手動で固相抽出を実施するときの障壁

トューマンエラー 再現性問題 自体的負担

試薬の種類や量、処理ステップの勘違いによるミス 処理した日や処理操作スキルの違いによる結果の相違 連続処理による負担、生産性の低下

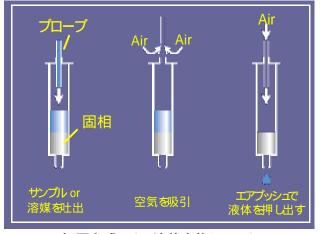
自動化ですべて解決

さらに

有害物質からオペレーターを隔離 抽出プロトコル検討の自動化 部署間でプロトコルの共有 移植 固相抽出処理後の分析自動化

すべて可能

اء



固相抽出 自動化の意味

GILSON社 全自動固相抽出システム (GX - ASPEC TM)

加圧方式による液体交換システム(各固相カラムに対しての液体流速制御が容易)

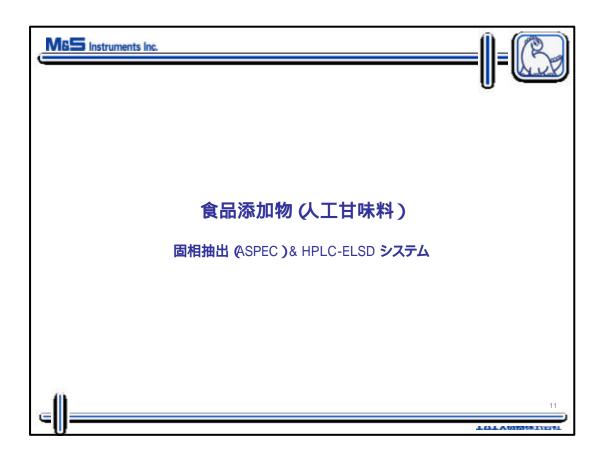
Model 406 Syringe Pump

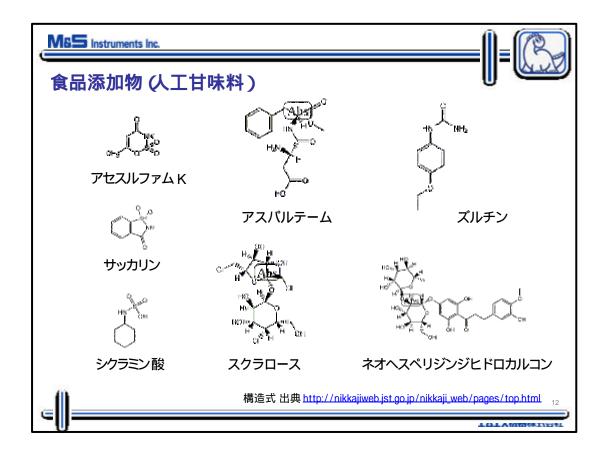
圧力トランスデューサー装備

配管内の圧力を常時モニタリング

サンプルやその他の原因による 流路の詰まりを検知可能

OL ADDRESS TOWN

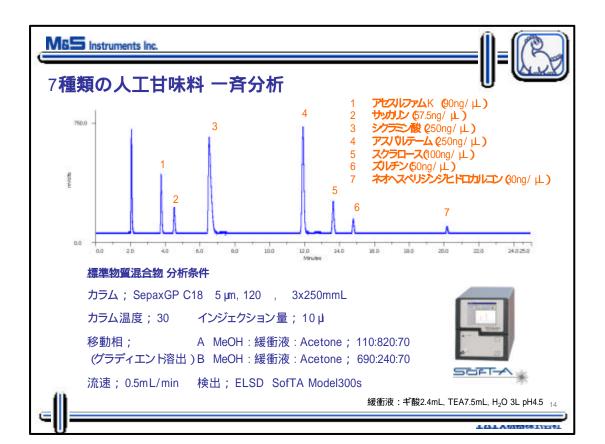

M&S Instruments Inc.



GILSON社

全自動固相抽出システム を使用したアプリケーション例

食品添加物 (人工甘味料) 残留農薬 (チアベンダゾール) 加工生成物質 (アクリルアミド)


人工甘味料使用基準

V/N	EU 最大使用量	EU 最大使用量	日本 最大使用量	日本 最大使用量
Court .	(mg/L = ppm) 飲料	(mg/kg = ppm) 缶詰	(mg/L = ppm) 飲料	(mg/kg = ppm) 缶詰
アセスルファムK	350	350	500	350-15000
サッカン	80	200	制限つき使用のみ	
シクラミン酸	250	1000	使用不可	
アスパルテーム	600	1000	使用基準なし	
スクラロース	300	400	400	580-1800
ズルチン	-	-	使用不可	
ネオヘスペリジンジとドロカルコン	-	-	-	-

出典 http://www.irmm.jrc.be/html/activities/food_additives/EUR22727EN.pdf

http://www.city.yokohama.jp/me/kenkou/eiken/food_inf/alldata.html 13

TOTV/MM441/Fig1

人工甘味料 定量のためのキャリブレーションデータ

検出器 ELSD インジェクション量 10 μ n = 3 (濃度上限はEU基準の1.25倍程度)	検出限界 (ng/ 止 = ppm)	Area [*] CV%	保持時間 CV%	相関係数
アセスルファムK	5.4	0.19-1.12	0.33	0.9995
サッカリン	6.9	0.38-2.19	0.32	0.9990
シクラミン酸	7.5	0.31-2.43	1.18	0.9991
アスパルテーム	7.5	0.48-2.78	0.09	0.9966
スクラロース	6.0	0.09-0.82	0.10	0.9991
ズルチン	6.0	0.28-2.12	0.09	0.9989
ネオヘスペリシンジとドロカルコン	6.0	0.56-3.73	0.04	0.9978

*ELSDの計算式に基づく

各人工甘味料の定量で使用に耐えうるデータを得た

M&S Instruments Inc.

固相抽出自動化プロトコル (モリ法 変法)

自動化しても特別な工程が必要となるわけではない...

固相抽出カラム (Varian BondElut C18 500mg/3mL)

ステップ	工程	試薬	容量	流速	平衡化時間	エアプッシュ
1	コンディショニング	メタノール	3.0mL	SIIIL/IIIIII	<u>-</u>	-
2	コンディショニング	緩衝液	2.5mL	1mL/min	0.1min	-
3	コンディショニング	緩衝液	2.5mL	1mL/min	0.2min	0.1mL
4, 5	サンプルロード	-	2.5mL	1mL/min	0.2min	-
6	洗浄	緩衝液	3.0mL	1mL/min	0.2min	-
7	溶出	メタノール	2.0mL	1mL/min	1.0min	2.0mL

緩衝液: ギ酸2.4mL, TEA7.5mL, H₂O 3L pH4.5 EU法では カラムを枯らさない にと が条件とされている

ー方で作業を厳密にコントロールできる ょうになる

人工甘味料 一斉分析

予備実験 無添加いちごジャムを使用した添加回収実験

原材料:いちご、砂糖、ブドウ糖、ペクチン、酸味料

+ 既知量の下記水溶液 固相抽出 濃縮 (手動) 分析

	? ジャムに 既知量添加 + 固相抽出 (mg/L = ppm)	? 既知量 標準物質 (mg/L = ppm)	? /? 回収率 %)
アセスルファムK	78	85	91.8
サッカン	52	51	102
シクラミン酸	229	228	100

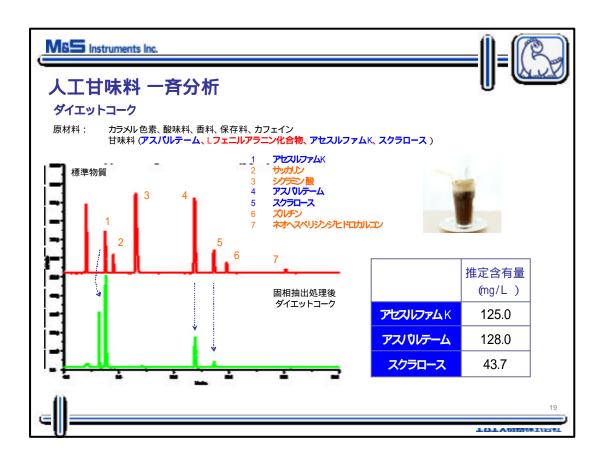
良好な回収率を示すデータを得た

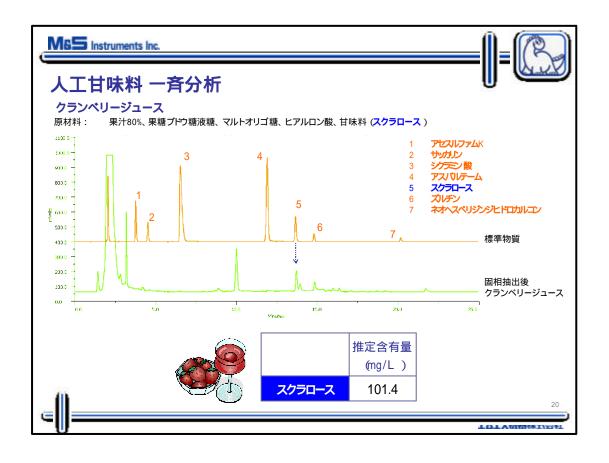
TOTAM

一般市販品の分析 具体例

人工甘味料 一斉分析

ダイエットコーク クランベリージュース フルーツ缶詰


ヨーグルト スナック菓子



10

人工甘味料 一斉分析

フルーツ缶詰

原材料: みかん、果糖ブドウ糖液糖、ガラクトオリゴ糖、クエン酸、香料、甘味料 (アセスルファムK、スクラロース)

アセスルファムK	27mg/L (シロップ)	21mg/kg (フルーツ)
スクラロース	31mg/L (シロップ)	23mg/kg (フルーツ)

ヨーグルト

原材料: 脱脂粉乳、生乳、ガラクトオリゴ糖、乳タンパク、ゼラチン、寒天、香料、甘味料(スクラロース)

スクラロース

90mg/L

スナック菓子

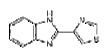
ポテト、デンブン、植物油脂、オニオンパウダー、食塩、肉エキスパウダー、砂糖、デキストリン、粉末しょうゆ酵母エキスパウダー、粉末油脂、香辛料、タンパク質か水分解物、粉末ソース、にんじんエキスパウダートマトパウダー、香味油、香料、酸化防止剤(ピタミンE)、乳化剤、カラメル色素、香辛料抽出物、甘味料(スクラロース) 原材料:

スクラロース

19mg/kg

M&S Instruments Inc.

残留農薬 (チアベンダゾール)


固相抽出 (ASPEC) & HPLC-DAD 自動分析システム

残留農薬 (チアベンダゾール)

鶏ささみを使用した添加回収実験

チアベンダゾール 用途:殺菌剤·駆除剤

固相抽出

HPLC

システムの妥当性を評価するために 添加回収実験 を実施

構造式 出典 http://nikkajiweb.jst.go.jp/nikkaji_web/pages/top.html 23

固相抽出自動化プロトコル と分析条件 (チアベンダゾール)

サンプルを適宜 粉砕 攪拌・遠心分離などで調製 厚生労働省 資料 参考)

固相抽出

HPLC

固相抽出カラム (Sepax Generik C18 500mg/3mL)

ステップ	工程	試薬	容量	流速
1	コンディショニング	メタノール	5mL	8mL/min
2	コンディショニング	超純水	5mL	8mL/min
3	コンディショニング	炭酸緩衝液	5mL	8mL/min
4	サンプルロード	-	4mL	2mL/min
5	洗浄 (+ガスパージ)	超純水	3mL	6mL/min
6	溶出	メタノール	2mL	3mL/min

チアベンダゾール 分析条件

カラム; SepaxHP C18 3 µm, 120 , 2.1x100mmL

インジェクション量; 5 pl Total Loop 法 カラム温度; 40 移動相; アセトニトリル: 0.05mon/L 酢酸アンモニウム = 1:4 (v/v)

流速; 0.2mL/min 検出; DAD Model172 295nm/500nm

HPLCは、畜水産物中のチアベンダゾール測定における公定法に基づいて実施 http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/zanryu3/2-170.html

40.38 38.28 39.17 Area 40.26 37.95 39.14 n = 341.31 38.23 39.69 平均 40.65 38.15 39.33 CV% 0.46% 0.79% 1.41% 回収率 93.86% 96.76%

本システム _{および} 固相抽出処理の 妥当性を証明

加工生成物質 (アクリルアミド)

固相抽出 (ASPEC) & HPLC-DAD 自動分析システム

TOT V/MM/41/PI4T

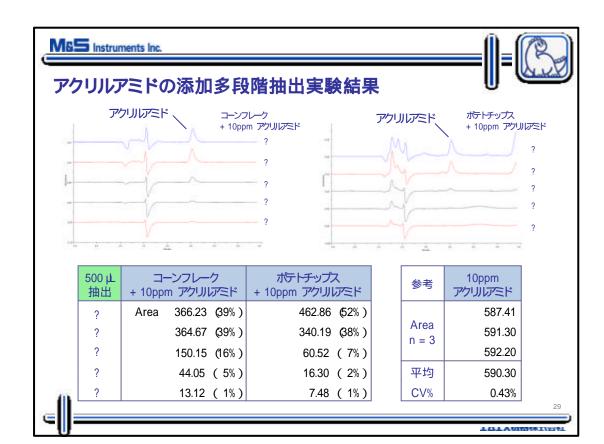
サンプルを適宜 粉砕 攪拌・遠心分離などで調製(食品総合研究所資料参考)

固相抽出カラム (Varian SAX150mg SCX150mg ODS200mg カスタムパッキング 3mL)

75	r _ツ プ	工程	試薬	容量	流速
	1	コンディショニング	メタノール	1mL	5mL/min
	2	コンディショニング	超純水	2mL	5mL/min
3 サンプルロード		サンプルロード	-	1mL	1mL/min
4	8	溶出	超純水	0.5mL x5	1mL/min

アクリルアミド 分析条件

カラム ; SepaxHP C18 $3\,\mu m$, 120 , 2.1x100mmL


カラム温度; 30 インジェクション量; 5 pl Total Loop 法

移動相; 0.1% TFA/H₂O

流速; 0.2mL/min 検出; DAD Model172 205nm/500nm

食品総合研究所 資料 http://aa.iacfc.affrc.go.jp/methodnfri.html

POT V (MARKET / FAST

まとめ

固相抽出作業 自動化の意味

手動時の障壁 ヒューマンエラー、再現性問題、身体的負担

<u>すべて解決</u> すべ*て*可能 有害物質からオペレーターを隔離 抽出プロトコル検討の自動化 部署間でプロトコルの共有 移植 固相抽出処理後の分析自動化

GILSON社

全自動固相抽出システム を使用したアプリケーション例

食品添加物 (人工甘味料) 残留農薬 (チアベンダゾール) 加工生成物質 (アクリルアミド)

固相抽出を強力にサポートするシステム
